I B. TECH II SEMESTER REGULAR EXAMINATIONS, SEPTEMBER - 2021 BASIC CIRCUIT ANALYSIS (ELECTRICAL AND ELECTRONICS ENGINEERING)

Time : 3 Hours

Max. Marks: 70

Note : Answer ONE question from each unit $(5 \times 14 = 70 \text{ Marks})$

UNIT-I

1. a) Define KCL and KVL. Resistors of R1= 10Ω , R2 = 4Ω and R3 = 8Ω are [7M] connected to two batteries (of negligible resistance) as shown in Fig.1 Find the current through each resistor

b) Write the mesh (loop) equations for the following circuit and then find i_x , i_y [7M] and v.

2. a) Solve for the current flowing through the each resistor in Fig.2

[7M]

Page 1 of 4

b) Calculate equivalent resistance across terminals A and B in Fig.3

- 3. a) Calculate the phase angle between V1=10 $cos(\omega t+50)$ and V2=12 $sin(\omega t-10)$. [4M] State which sinusoid is leading.
 - b) Explain concept of admittance? And explain parallel RL circuit across [10M] sinusoidal supply.

(OR)

- 4. a) Explain the following terms (i) Peak value (ii) Average value and (iii) RMS [7M] value
 - b) The current in a circuit lag the voltage by 30° . If the input power be 400W [7M] and the supply voltage be V=100sin(370t). Find the complex power

UNIT-III

5. a) Find Io in Fig.4 using mesh analysis

b) If a series of LCR circuit has same current at $\omega = 100$ rad/sec, and $\omega = 900$ [7M] rad/sec, then find resonance frequency in Hz of the circuit.

(OR)

- 6. a) Define Resonance also derive the condition for resonance in a series RLC [7M] circuit.
 - b) Write a short notes on (i) Selectivity (ii) Bandwidth. [7M]

R20

[7M]

[7M]

7. a) Find the Thevenin's equivalent circuit across the terminals ab shown in Fig.5 [7M]

b) Verify the Reciprocity theorem in the circuit shown in Fig.6

 $f_{10<90^{\circ}V}$ f_{1} f_{1} f_{1} f_{1} f_{1} f_{2} f_{2}

(OR)

8. a) Find the current through 10 Ω resistance in the given network shown in Fig. 7 [7M] by using Superposition theorem

b) Find the current and voltage across the load terminal shown in Fig. 8 using [7M] Millman's theorem

Page 3 of 4

R20

[7M]

- 9. a) Show that in a series magnetic circuit total reluctance equals to sum of [7M] individual reluctances.
 - b) Calculate the phasor currents I_1 and I_2 in the circuit of Fig.9. [7M]

- 10. a) Explain the following terms (i) Magnetic Field, (ii) Magnetic Flux, [7M] (iii) Magnetic Flux Density
 - b) Determine the M.M.F. required to generate a total flux of 100μ Wb in an air [7M] gap 0.2 cm long. The cross-sectional area of the air gap is 25 cm².

* * * * *