I B. TECH II SEMESTER REGULAR EXAMINATIONS, SEPTEMBER - 2021 BASIC CIRCUIT ANALYSIS
 (ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 Hours
Max. Marks : 70
Note : Answer ONE question from each unit ($\mathbf{5} \times \mathbf{1 4}=\mathbf{7 0}$ Marks)

UNIT-I

1. a) Define KCL and KVL. Resistors of $\mathrm{R} 1=10 \Omega$, $\mathrm{R} 2=4 \Omega$ and $\mathrm{R} 3=8 \Omega$ are connected to two batteries (of negligible resistance) as shown in Fig. 1 Find the current through each resistor

Fig. 1
b) Write the mesh (loop) equations for the following circuit and then find i_{x}, i_{y} [7M] and v.

2. a) Solve for the current flowing through the each resistor in Fig. 2

Fig. 2
b) Calculate equivalent resistance across terminals A and B in Fig. 3

Fig. 3
UNIT-II
3. a) Calculate the phase angle between $\mathrm{V} 1=10 \cos (\omega t+50)$ and $\mathrm{V} 2=12 \sin (\omega \mathrm{t}-10)$. [4M] State which sinusoid is leading.
b) Explain concept of admittance? And explain parallel RL circuit across [10M] sinusoidal supply.
(OR)
4. a) Explain the following terms (i) Peak value (ii) Average value and (iii) RMS [7M] value
b) The current in a circuit lag the voltage by 30°. If the input power be 400 W and the supply voltage be $\mathrm{V}=100 \sin (370 \mathrm{t})$. Find the complex power
UNIT-III
5. a) Find Io in Fig. 4 using mesh analysis

Fig. 4
b) If a series of LCR circuit has same current at $\omega=100 \mathrm{rad} / \mathrm{sec}$, and $\omega=900$ [7M] $\mathrm{rad} / \mathrm{sec}$, then find resonance frequency in Hz of the circuit.
(OR)
6. a) Define Resonance also derive the condition for resonance in a series RLC circuit.
b) Write a short notes on (i) Selectivity (ii) Bandwidth.
7. a) Find the Thevenin's equivalent circuit across the terminals ab shown in Fig. 5

Fig. 5
b) Verify the Reciprocity theorem in the circuit shown in Fig. 6

Fig. 6
(OR)
 by using Superposition theorem

Fig. 7
b) Find the current and voltage across the load terminal shown in Fig. 8 using

Millman's theorem

Fig. 8
Page 3 of 4

UNIT-V

9. a) Show that in a series magnetic circuit total reluctance equals to sum of [7M] individual reluctances.
b) Calculate the phasor currents I_{1} and I_{2} in the circuit of Fig.9.

Fig. 9
(OR)
10. a) Explain the following terms (i) Magnetic Field, (ii) Magnetic Flux, [7M] (iii) Magnetic Flux Density
b) Determine the M.M.F. required to generate a total flux of $100 \mu \mathrm{~Wb}$ in an air [7M] gap 0.2 cm long. The cross-sectional area of the air gap is $25 \mathrm{~cm}^{2}$.

